M463 Homework 8

Enrique Areyan
 June 27, 2013

(2.4) \#10 Let N be a fixed large integer. Consider n independent trials, each of which is a success with prob. $1 / N$. Show that if $n \approx \frac{5}{3} N$, then the chance of at least two successes is about $1 / 2$.

Solution: Since N is large we know that the probability of success $1 / N$ is small, and that the number of trials n is also large ($n \approx \frac{5}{3} N$, so $n>N$). Therefore, we may use the Poisson Distribution to approximate the Binomial Distribution.

Let X be distributed as a binomial with probability of success $p=1 / N$ and $n=$ number of trials. Then, we want to know:

$$
P(X \geq 2)=1-P(X<2)=1-P(X \leq 1)=1-P(X=0 \text { OR } X=1)=1-P(X=0)-P(X=1)
$$

Using the Possion approximation with $\mu=n p=n / N$:

$$
P(X \geq 2)=1-P(X=0)-P(X=1) \approx 1-\frac{e^{-\frac{n}{N}}\left(\frac{n}{N}\right)^{0}}{0!}-\frac{e^{-\frac{n}{N}}\left(\frac{n}{N}\right)^{1}}{1!}=1-e^{-\frac{n}{N}}-\frac{n}{N} e^{-\frac{n}{N}}
$$

By assumption $n \approx \frac{5}{3} N$, so $\frac{n}{N} \approx \frac{5}{3}$. Replacing in the above equation:

$$
P(X \geq 2) \approx 1-e^{-\frac{n}{N}}-\frac{n}{N} e^{-\frac{n}{N}} \approx 1-e^{-\frac{5}{3}}-\frac{5}{3} e^{-\frac{5}{3}}=0.496331726 \approx \frac{1}{2}
$$

Which shows the result we wanted.

